

Announcements

Hw2 is available on Gradescope (one coding question and 2 written question. **Due Friday Feb 6 only one late day.**

OK to import data structures

Problem 3: efficient ~ polynomial time

Prelim 1: Thursday, Feb 12. fill out this [form](#), if you have a conflict.

Covers hw1-2, sections week 1-2, lectures through this week. Section next week is review. + DP quiz using HW2

Other prelim info and practice questions will be posted today (~tonight)

Most TAs have their picture on the TA list on Canvas

Dynamic programming IV: Sequence Alignment

Correcting misspelled words:

- Accommodate
- Separate

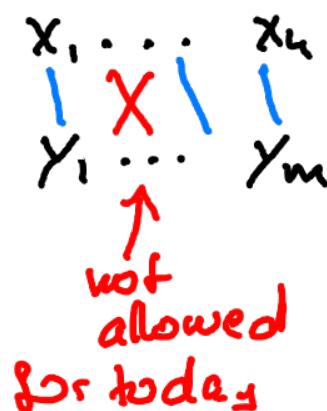
- Recommend

- Maintenance

The sequence alignment problem

sequence (of letters)

how similar are
 x & y



δ = cost skipping a letter
on one

$\text{cost}(\alpha, \beta) > 0 \quad \text{if } \alpha \neq \beta$
aligned

$\text{cost}(\alpha, \alpha) = 0$

min total cost, no crossing

What may be good subproblem for Sequence Alignment?

What is (last) decision

Options for the end

- either match x_n y_m
- skip x_n
- skip y_m

$x_1 \dots$
 $y_1 \dots$

as crossing
not allowed

x_n
 $\Rightarrow y_m$
 y_m skipped

Join by Web PollEv.com/evatardos772

What would be good subproblems for sequence alignment for aligning strings x_1, \dots, x_n and y_1, \dots, y_n ?

$x_1 \dots x_n$ try to align
 $y_1 \dots y_m$

- A. $O(i) = \min$ cost for aligning x_1, \dots, x_i with y_1, \dots, y_i
- B. $O(i) = \min$ cost for aligning x_1, \dots, x_i with y_1, \dots, y_n
- C. $O(i) = \min$ cost for aligning x_1, \dots, x_n with y_1, \dots, y_i

D. Either B or C would work

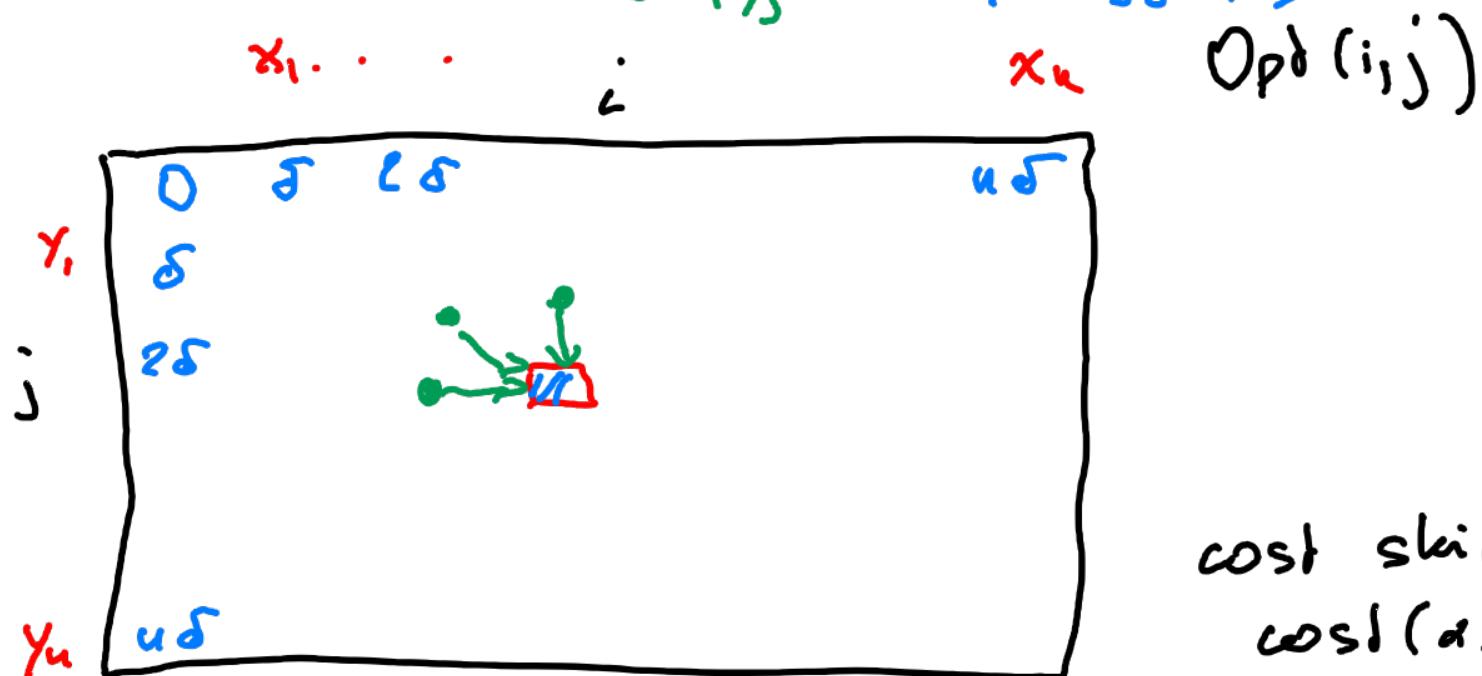
E. None of these work

Options

- either match $\dots x_n \dots y_m$
- skip $x_n \leftarrow \dots x_{n-1}$
- skip $y_m \leftarrow \dots y_{m-1}$

Subproblem for Sequence Alignment?

$\text{Opt}(i, j) = \min \text{ cost of aligning } x_1 \dots \text{ (circled } x_i \text{)} \text{, } y_1 \dots \text{ (circled } y_j \text{)}$
 $\text{--- match } x_i \text{, } y_j$
 $i, j \geq 1$
 $\text{Opt}(i, j) = \min (\text{cost}(x_i, y_j) + \text{Opt}(i-1, j-1),$
 $\text{skip } x_i \text{ } \delta + \text{Opt}(i-1, j),$
 $\text{skip } y_j \text{ } \delta + \text{Opt}(i, j-1))$
 $x_1 \dots \text{ (circled } i \text{)} \text{, } \dots \text{ (circled } j \text{)} \text{, } x_n \text{, } \text{Opt}(i, j)$
 $i = 0, \dots, n$
 $j = 0, \dots, m$
 base:
 $\text{Opt}(0, j) = \delta j$



$$\cos \text{skip} = \delta$$

$$\cos(\alpha, \beta) \geq 0 \text{ if } \alpha \neq \beta$$

The dynamic program

For $i = 0, \dots, n$

$$\text{Opt}(i, 0) = \delta_i$$

For $j = 0, \dots, m$

$$\text{Opt}(0, j) = \delta_j$$

For $j = 1, \dots, m$

For $i = 1, \dots, n$

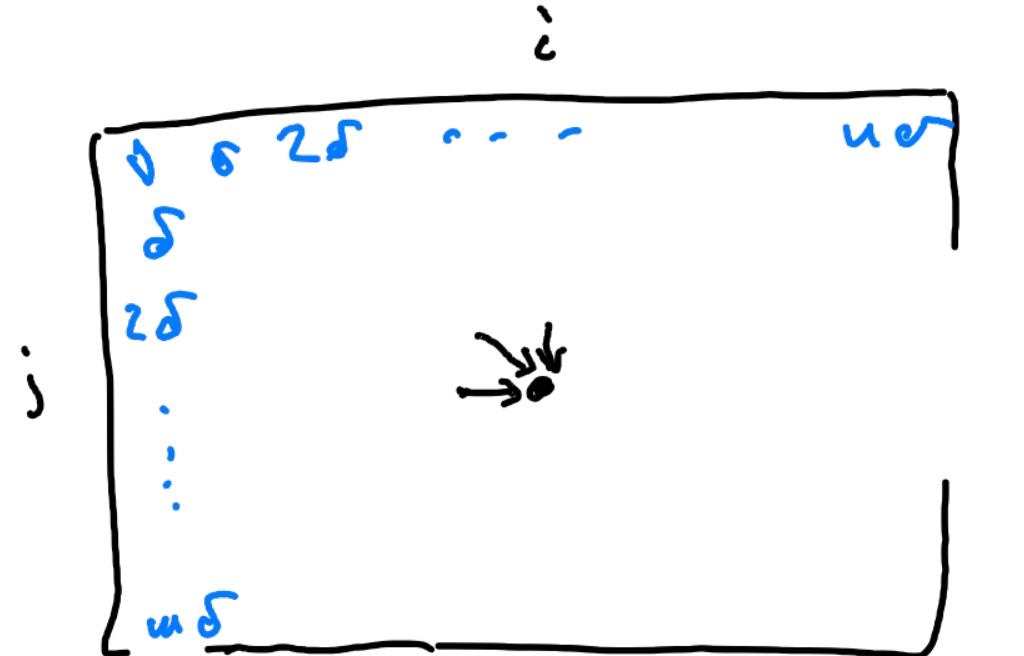
$$\text{Opt}(i, j) = \min (\text{cost}(x_i, y_j) + \text{Opt}(i-1, j-1))$$

$$\delta + \text{Opt}(i-1, j)$$

$$\delta + \text{Opt}(i, j-1))$$

end for

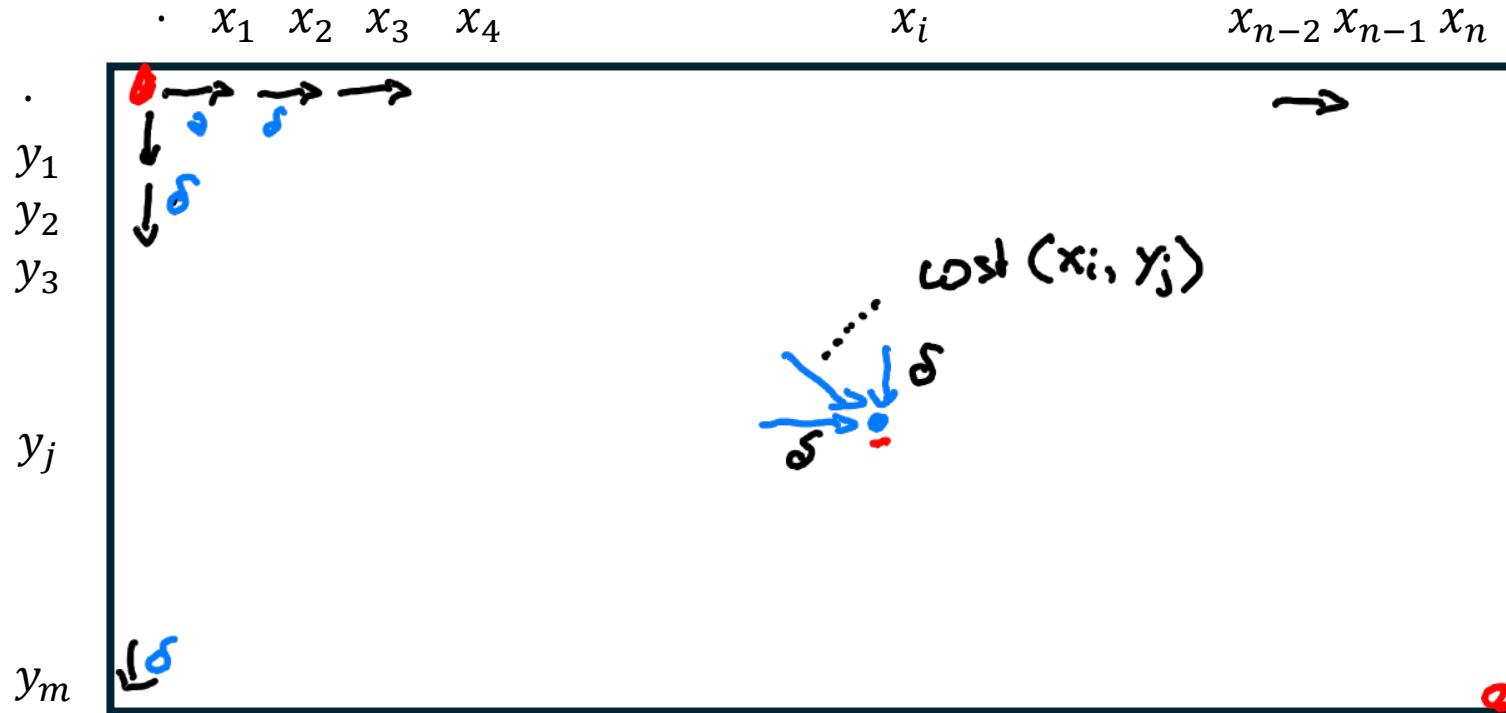
Return $\text{Opt}(n, m)$



Running time
 $O(n \cdot m)$ size table

total time $O(mn)$

Sequence Alignment as min-cost path



G with $(u+1)(v+1)$ nodes

edges

$(i-1, j) \rightarrow (i, j)$

cost

δ

$(i, j-1) \rightarrow (i, j)$

δ

$(i-1, j-1) \rightarrow (i, j)$

$\text{cost}(x_i, y_j)$

best solution =
min cost path from
 $s = (0, 0)$ to $(n, m) = t$

Correctness, running time, and extracting the alignment

If direct dynamic program
correctness induction proof

If using reduction:
correctness

Part 1: solution of real problem (alignment)
corresponds to a path

Part 2: any path corresponds to an alignment